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EE-557
Semiconductor devices |

Génie Electrique et Electronique
Master program

Prof. Elison Matioli Energy bang gap and band diagrams

Outline of the lecture
1. Introduction
2. Energy gap and energy bands
3. Important bits of knowledge

References:
® ). A. del Alamo, course materials for 6.720J Integrated Microelectronic Devices, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/)
® (. Kittel, Introduction to Solid State Physics, John Wiley & Sons, 2005



Key questions EPFL

 What is a semiconductor?

* Whatis an energy band gap?

* How do we treat electrons in a solid?

* How do atoms arrange themselves? And the consequences...

 How do electrons arrange themselves (in energy) in an electronic system?
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Energy band-gap
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From atoms to semiconductors

Transmission electron microscope (TEM)
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Take a look at this link to ”play” its crystal structure:

https://sketchfab.com/3d-models/silicon-crystal-lattice-

73e292f32ffe4cad90el66facba3l7e?

3.2x10°Qcm = 3.2x103OQm

Silicon intrinsic: p


https://sketchfab.com/3d-models/silicon-crystal-lattice-73e292f32ffe4ca490e166faeba317e7
https://sketchfab.com/3d-models/silicon-crystal-lattice-73e292f32ffe4ca490e166faeba317e7

Semiconductors are solids E PFL

e Semiconductors are crystalline solids

e Crystalline solid = elemental atomic arrangement, or unit cell, repeated “ad infinitum” in space in three
dimensions.
Si lattice constant: 0.54 nm
Si atomic spacing: 0.24 nm

e Solid is an electronic system with periodic potential

Silicon Crystal unit cell

Structure is held together by covalent bonding 4 valence electrons shared with 4 neighbors:

lowest energy situation (stable configuration)

See: http://www.science.oregonstate.edu/~gablek/CH231H/Silicon.htm
https://sketchfab.com/3d-models/silicon-crystal-lattice-73e292f32ffe4ca4d90e166faeba3l7e7



http://www.science.oregonstate.edu/~gablek/CH231H/Silicon.htm
https://sketchfab.com/3d-models/silicon-crystal-lattice-73e292f32ffe4ca490e166faeba317e7

Crystal structure E P F L

Silicon Crystal unit cell
* Each Si atom has 4 nearest
neighbors

« |attice constant =5.431 A

How Many Silicon Atoms per cm3?

-

“diamond cubic” lattice



Energy band-gap EPFL

What is an energy bang gap Eg”?

metal insulator semiconductor

Eo Eo Eo

Conduction band

Conduction band Conduction band
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Valence band

Valence band
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Energy band-gap EPFL

What is a Semiconductor Energy Bandgap?

Valence Electrons

©

Energy Required to Liberate a
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*For metals, the electrons can jump from the valence orbits (outermost core energy levels of the atom) to any
position within the crystal (free to move throughout the crystal) with no “extra energy needed to be supplied”
*For insulators, 1t s VERY DIFFICULT for the electrons to jump from the valence orbits and requires a huge

amount of energy to “free the electron” from the atomic core.
*For semiconductors, the electrons can jump from the valence orbits but does require a small amount of energy to

“free the electron” from the atomic core.



Energy band-gap EPFL

What is a Semiconductor Energy Bandgap?

Valence Electrons

Energy Required to Liberate a

Valence Electron is related to g;’::?r%‘:mg

the Bond Strength of thy .’ \
material i

{@®

",'.-:‘"' Polar Bond
*,, (partially ionic)

*Semiconductor materials are a sub-class of materials distinguished by the existence of a range of disallowed
energies between the energies of the valence electrons (outermost core electrons) and the energies of electrons
free to move throughout the material.

*The energy difference (energy gap or bandgap) between the states in which the electron 1s bound to the atom
and when 1t 1s free to conduct throughout the crystal is related to the bonding strength of the material, 1t’s density,
the degree of 1onicity of the bond, and the chemistry related to the valence of bonding.

*High bond strength materials (diamond, SiC, AIN, GaN etc...) tend to have large energy bandgaps.

*Lower bond strength materials (S1, Ge, etc...) tend to have smaller energy bandgaps.



Energy band-gap EPFL

How do energy bands and band gaps form?

11



Energy band-gap

Simple case: Hydrogen atom

2

. €
Electron experiences an electrostatic Coulomb attraction to the nucleus V=— —
Ay
Hamiltonian for this problem (time-independent Schroedinger’s equation):
Energies electrons are
hQ VQw vw E?’D/' allowed to have
2m
v o\ v 4 Lo Wavefunction of an electron
Kinetic Potential total
energy energy energy
After writing the Laplacian V2 in spherical coordinates:
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The wave nature of electrons results in only a few allowed energies (like a guitar string)
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|1(r)|? gives the probability of finding an electron in
a given positionr

do
Electron in a hydrogen atom

v



Energy band-gap

Simple case: Hydrogen atom

)

. e”
Electron experiences an electrostatic Coulomb attraction to the nucleus V=-— 7 p—
nEp
Hamiltonian for this problem (time-independent Schroedinger’s equation):
Energies electrons are
h2 v2¢ Vw E,lp/' allowed to have
2m
v o\ v 4 Lo Wavefunction of an electron
Kinetic Potential total
energy energy energy

After writing the Laplacian V2 in spherical coordinates:
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Energy band-gap EPFL

The dual nature of the electron

This results in different levels with principal quantum number n, and with sub-levels

s,p,d... defined by the angular momentum number |,... ) .

d

Nodes

s states p states d states

Node Node
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(a) Electron probability (b) Contour probability *

/25 3s
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Distance from nucleus ()

Electron probability (¥2r?)

(c) Radial probability

Figure from: https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_- 15
_The_Central_Science_(Brown_et_al.)/06._Electronic_Structure_of Atoms/6.6%3A_3D_Representation_of Orbitals



Energy band-gap EPFL

What happens when atoms come together?
Pauli exclusion principle: no two electrons occupying the same space, can have the same energy.

Thus, as atoms are brought closer towards one another and begin to bond together, their energy levels
must split into bands of discrete levels so closely spaced in energy that they can be considered a
continuum of allowed energy.

The wavefunction of the electrons overlap: two electrons will interact

This perturbation results in discrete quantized energy levels splitting into two discrete energy levels

2 atoms

Splitting of the n=1 state

Electron energy

v

v

Strongly bonded materials tend to have small interatomic distances between atoms. Thus, the strongly
bonded materials can have larger energy bandgaps than weakly bonded materials.



Energy band-gap EPFL

What happens when atoms come together?

1 2
Hl¢1 =E01§01 H,p, = E,p,

When atoms come close to each other, the electron
wavefunction 1s delocalized on atoms 1 and 2 :

Y= (Cl(Pl +CHP 2) Linear combination of atomic orbitals

2

§_mW+(V1 + Vs by =Ey

17
Courtesy of J-Y Duboz



Energy band-gap EPFL

What happens when atoms come together?
Develop and project on ¢, and ¢,

c B + C2E02<¢1 |(ﬂ2> TC, <(P1|V1 |§92> T <(01|V2 |(P1> =Ec + czE<(P1 |§92>
01E01<(02 ‘(01> +c, By, +c, <¢2‘Vl ‘(02> T C <¢2‘V2 ‘¢1> =Ec, + 61E<¢2 ‘¢1>

(E(n _E)+<(P1‘V2 ’(01> (Eoz —E)<(p1 ’(pz>+<¢1‘V1 ‘(Pz> — 0
(E01_E)<¢2|¢1>+<¢2|V2'(p1> (Eoz_E)+<(P2|V1‘(02>

e Can be solved as it is ©

 But 1t can be simplified by introducing assumptions
which are done in the real semiconductor band structure
calculations based on this approach (Tight Binding) © ©

18
Courtesy of J-Y Duboz



Energy band-gap EPFL

What happens when atoms come together?

(E01 _E)+<¢1|V2 ‘(P1> (Eoz _EX(P1 |§02>+<(P1’V1 ’(P2> L
(E01_E)<¢2|¢1>+<¢2‘V2‘¢1> (Eoz_E)+<(P2’V1‘¢2>

<(01 ‘ ®, > =0 Not strictly true. In addition E,-E 1s expected to be small

(@1IV2l@1) = {@2|Vi]l@z) by symmetry

Describes the effect of the potential of atom 2 on the energy in atom 1, and vice
versa. It 1s a shift of the energy, with no important effect.

(when atoms are different or with less trivial symmetries, 1t has an effect).

Let us renormalize the energies :

E =E, +<¢1‘V2 ‘§01>
E,=E, +<§02‘V1 ‘(Pz>

Courtesy of J-Y Duboz



Energy band-gap

What happens when atoms come together?

(EI_E) <¢1’V1’(p2>20
<(P2|V2’§01> (Ez_E)

We introduce : <(,/)1|V1 |(p2> x <(p2 v, ‘(p1> =

BT E
RGN

N

If atoms are 1dentical: E,=E,

Eq

2)2 I 1

(

Z

E=E V|

E; E,
2V

2 new energy eigenvalues

=PrL
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Courtesy of J-Y Duboz



Energy band-gap

What happens when atoms come together?

=PrL

2 new eigen states

L

Lowest energy: bonding state

Highest energy: anti-bonding
state

21
Courtesy of J-Y Duboz



Energy band-gap EPFL

What happens when atoms come together?

Metals versus semiconductors

x3

4
electrons

Si: 1s? 252 2p© 3s? 3p? 2|A| > 26 = E, — E; | semiconductor

electrons

x3
x3 —EL x3 EL = B 4
. —*%-%2 g clectrons
oo :
electrons | Eq 2|1Al <26 =E, —Es | metal

Courtesy of J-Y Duboz



Energy band-gap EPFL

Quantum states cluster in bands leaving bandgaps (regions without allowed states) in between.

E A

~107% eV

"Bands" are
composed of
closely spaced
orbitals !

a Interatomic distance

I
23



Electronic structure of semiconductors E PFL

Quantum states filled with one electron per state starting from lowest energy state
(Pauli exclusion principle)

Eo Eo Eo

Eg At O K: the energy of the top-most
energy state filled is called the
Fermi level

I I |
(]

a) metal b) insulator ¢) semiconductor

No conduction is possible in a full band insulators: semiconductors do not conduct at O K.
Conduction requires a partially filled band: metals conduct at 0 K.

But in semiconductors at finite temperatures, some electrons populate next band above bandgap conduction
becomes possible. 24




Energy band-gap EPFL

Consider the case of the group 4 elements, all covalently bonded

En;rgy Conduction Band

(empty)

/

Energy
Gap

Element Atomic Radius/Lattice Constant Bandgap

(How closely spaced are the atoms?)

ed) Decreasing

C 0.91/3.56 Angstroms 5.47 eV S '(Itptmgg

= Gond
Si 1.46/5.43 Angstroms 1.12eV Méta:ueakfy o Strength)
Ge 1.52/5.65 Angstroms ~ 0.66 €V | somicoducr Saricansutor
o-Sn 1.72/6.49 Angstroms ~0.08 eV* ‘

Pb 1.81/** Angstroms Metal

R VI
w
.

7.

.....

*Only has a measurable
bandgap near 0K

3, ) redz
e 5721 ace 5200 s20s
a1 es I s o .
| e | xeurssn
Hataium Tantakum

**Different bonding/Crystal
Structure due to unfilled
higher orbital states

w3+ Wmm» SARGENT-WELCH SCIENTIFIC COMPANY

7300 NORTH LINDER AVENUE. SKOKIE, ILLINOIS 60077 s
Catolog Mawber 518806
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How Energy Bands and Energy Gap are calculated? =Pr-L

The dual nature of the electron
If it is a wave, we can define a wavevector: Y (x,t) = Acos(kx — wt + @)

where:

26



How Energy Bands and Energy Gap are calculated?

Energy-momentum relationship: characterizes the band structure
* Important for the interactions with photons and phonons

2
Schrodinger’s equation: [— 2h -V2 + V(r)] wr, k) = E(k)y(r, k)
m

Bloch function w(r, k) = exp(jk-r)Uy(r, k)

y(r,k) and Uy(rk) are periodicin R in real space

Thus:
w(r+R, k) = exp[jk-(r+R)]U,(r+R, k)
= exp(k - r)exp(jk - R)U,(r, k)
k * R 1s a multiple of 2.
Consequences:

* In1D:only k=2m/a are allowed (where a is the real space period)

* E(k)is periodic in k-space: E(k) = E(k+G)

e ltis sufficient to define k in a primitive cell, which is defined by the Brillouin zone
e Entire band structures need only to be calculated within the brillouin zone.

=PrL



Energy band-gap EPFL

Ge GaAs

Reciprocal space directions:
: Ge
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Indirect band gap direct band gap 28



A few important concepts E PF L

Effective mass

Band diagram: We focus on minimum of the bands (quadratic region)

Energy-momentum relationship near

GaAs band edges
Energy () = p* _ h2k?
300K E;=142¢V 2m* 2m*
X-valley C-valley Ep=1T1eV Effective mass in 1D
N Ex =190V 2r Y
Eo =034 eV * 32 J
alley m, = fi -
ok
Ex
Momentum
<100> <|11> p=nhk
< >
Wave vector
E, Heavy holes h =h/2m : planck’s constant = 6.58 eV.s
’ Light hotes
/\ For example:
Split-off band Si: m*=1.09 m,

GaN: m“=0.2 m,
GaAs: m" = 0.06 m, 29



A few important concepts

Temperature dependence of the band gap

Bandgap E, (¢V)
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E(0) a B
(V) (eV/K) (K)

GaAs 1.519 5.4x10% 204
S1 1.169 4.9x104 655

| |

0

!
200

| 1 l
400 600 800

r'(K)

T2
EfT) = Ef(0)- =~

T+ pf

30
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Appendix — Supplementary Material



Crystal structure: Definitions

Unit cell: Defines the symmetry and structure of the
entire lattice

- - e

Bravais lattices: describe the geometric arrangement of
the lattice points

Simple cubic Body-centered cubic Face-centered cubic
(Po) (Na, W, etc.) (Al, Au, etc.)

Crystal structure and symmetry play a critical role in 2 W ©

determining many physical properties, such as:

* C(Cleavage
* Mechanical properties (elastic compliance, stiffness)
* Electronic band structure: Band gap
e Optical transparency
* Thermal properties _
Tetrahedron Diamond Tetrahedron Zincblende

° Polarization f|e|ds (Si, Ge, C, etc.) (GaAs, GaP, etc.)
(d) (e)

z

@ G
OO
O Sla®="
T
AR
-
N )
Zincblende structure: 11I-V compound semiconductors: .{gﬁ}“g@.
GaAs, GaP, etc o 3

. . k-sal Wurtzi
* Important for optoelectronics and high-speed Ics (PbS, PbTe etc) (CdS. 208, etc)
® (8)

a is the lattice constant.

GaN: most common in wurtzite structure




Crystallographic Notation E PF L

Miller Indices: Notation Interpretation
(hkl) crystal plane
_’ {thkl} equivalent planes
; [h k] crystal direction
<hkl> equivalent directions
// ,/71 h: inverse x-intercept of plane
_'f_T,‘Ef__ oy ., kiinverse y-intercept of plane
el et I: inverse z-intercept of plane
o T (Intercept values are in multiples of the lattice constant;

h, k and | are reduced to 3 integers having the same ratio.)

Sample direction vectors and their corresponding Miller indices.

** Wurtzite materials have an hexagonal crystal structure:
4 Miller indices are used to represent it more easily (see appendix for more information)



Crystal structure

How Many Silicon Atoms per cm3?

e Number of atoms in a unit cell:
e 4 atoms completely inside cell

e Each of the 8 atoms on corners are shared among cells
—> count as 1 atom inside cell

e Each of the 6 atoms on the faces are shared among 2
cells 2 count as 3 atoms inside cell

— Total number inside thecell=4+1+3=8

e Cell volume:
(.543 nm)3=1.6 x 1022 cm3

e Density of silicon atoms

= (8 atoms) / (cell volume) = 5 x 1022 atoms/cm?3

=PrL



Crystallographic Notation (Appendix) E PF L

Wurtzite materials have an hexagonal crystal structure

4 Miller indices are used to represent it more easily

a) b)
(-1-120)
(0-110)

% a,=1/3[-12-10]

\
\
\
.
.
\

v'w'l — [uviw]

a3=1/3[-1-12°] 1/2[10-10] 1 v
u=—(2u'-v

a,=1/3[2-1-10] 3
LIPS
c) P o o ,?o v=—(2v'-u
o o % ¢ o # e ®
Bl A t =-(utv)
- | |20 S
- -
o | (0001)| ! i e
‘ 1‘ ? o e} e
\ 2> e ‘/<';120> L *

Coulon, Pierre-Marie. (2014). Growth and characterization of GaN nanowires/microwires



Crystallographic Notation (Appendix) E PF L

Wurtzite materials have an hexagonal crystal structure

HCP Crystallographic Directions
Vector repositioned (if necessary) to pass through origin.

Read off projections in terms of unit cell dimensions al, a2, a3, or ¢ 3.
Adjust to smallest integer values
4. Enclose in square brackets,

1.

2.
3.
4

16D~ 1120

-~

a,

Adapted from Fig. 3.8(a), Callister 7e.

cX.

/2, V2, -1, 0

[u'V'W'] = [uviw]

P
u—§(2u-v)
v=1—(2v'-u')

3
t =-(u +v)
w=w'

=> [1120] @s°

dashed red lines indicate
projections onto a, and a, axes dy

http://courses.washington.edu/mse170/lecture_notes/RinaldiF09/Lecture5-MR2009.pdf



Interesting links and videos

Crystallography and reciprocal space
https://www.youtube.com/watch?v=DFFU39A3fPY

Quantum mechanics through walkers

https://www.youtube.com/watch?v=WIyTZDHuarQ

Slides on semiconductor physics
https://slideplayer.com/slide/6940114/
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